0
0

دانلود مقاله ساخت داربست های مهندسی بافت به روش Gas Foaming

728 بازدید

يكي از معضلات بزرگي كه علم پزشكي از ديرباز با آن درگير بوده است، ارائه درماني قطعي براي بازسازي بافت هاي از كار افتاده و يا معيوب است. متداول ترين شيوه در درمان اين نوع بافت ها، روش سنتي پيوند است كه خود مشكلات عديده اي را به دنبال دارد. از جمله اين مشكلات مي توان به … پیشنهاد می کنیم ادامه این مطلب مفید و ارزشمند را در مقاله ساخت داربست های مهندسی بافت به روش Gas Foaming دنبال نمایید. این فایل شامل 241 صفحه و در قالب word ارائه شده است.

مقاله ساخت داربست های مهندسی بافت به روش Gas Foaming

مشخصات فایل ساخت داربست های مهندسی بافت به روش Gas Foaming

عنوان: ساخت داربست های مهندسی بافت به روش Gas Foaming
فرمت فایل : word (قابل ویرایش)
تعداد صفحات : 241
حجم فایل : 184 کیلوبایت

بخشی از  مقاله ساخت داربست های مهندسی بافت به روش Gas Foaming را در ادامه مشاهده خواهید نمود.

 

داربست مهندسي بافت

 در مهندسي بافت، سلول ها بر روي يك بستر از جنس پليمر زيست تخريب پذير بسيار متخلخل استقرار يافته، رشد و تكثير مي يابند. روند رشد اين سلول ها در جهت بازسازي بافت در سه بعد است. يكي از اساسي ترين قسمت هاي مهندسي بافت، داربست هاي زيست تخريب پذير هستند كه تحت نام Scaffold شناخته مي شوند. اين داربست ها در حقيقت بستري متخلخل با ساختاري شبيه به ماتريس برون سلولي بافت (ECM) هستند كه رشد سلول را به سمت تشكيل بافت مورد نظر جهت مي دهند. از آنجا كليه سلول هاي بدن به غير از سلول هاي سيستم خون رساني و بافت هاي جنيني خاص بر روي ECM رشد مي كنند، ايجاد يك بستر مصنوعي در محيط in vitro بسيار اهميت دارد. با رشد سلول ها بر روي داربست، داربست تخريب مي شود. جنس اين داربست ها پليمر و در بعضي موارد كامپوزيت پليمر- سراميك است. پليمر هاي متداول مورد استفاده در مهندسي بافت در جدول 1 آورده شده است.

پر استفاده ترين پليمر ها در مهندسي بافت پليمرهاي خانواده پلي- هيدروكسي اسيد شامل PGA , PLA و PLGA هستند كه به طور گسترده به عنوان داربست مورد استفاده قرار مي گيرند. داربست هاي كامپوزيت پليمر-سراميك در موارد ارتوپدي استفاده شده و از مهمترين سراميك هاي به كار رفته در آنها مي توان به تري كلسيم فسفات، تتراكلسيم فسفات و هيدوركسي آپاتيت اشاره كرد. علت به كارگيري سراميك ها در داربست، افزايش استحكام پليمر، چسبندگي به استخوان و قابليت تحرك رشد درون استخوان است. بهينه ترين كامپوزيت در اين مورد تركيب PLGA و هيدروكسي آپاتيت شناخته مي شود.

   مكانيزم تخريب PGA , PLA و كوپليمر هاي آنها بر اساس هيدروليز تصادفي باندهاي استري زنجيره پليمري است. محصول نهايي اين تخريب آب و  است كه به آساني از بدن دفع مي شوند. يك داربست ايده آل بايد  داراي تخلخل مناسب براي انتشار مواد غذايي بوده و امكان پاكسازي مواد زائد را داشته و داراي پايداري مكانيكي مناسبي جهت تثبيت و انتقال بار باشد. علاوه بر اين، شيمي سطح ماده بايد چسبندگي سلول و علامت دهي داخل سلولي (intracellular signaling) را به نحوي ارتقاء دهد كه سلول ها فنوتيپ طبيعي خودشان را بروز دهند. براي رشد سريع سلول، داربست بايد داراي ميكروساختار بهينه باشد، فاكتورهاي مهم يك داربست عبارتند از اندازه خلل و فرج، شكل و مساحت ويژه سطح. خلل و فرج موجود در داربست در حقيقت مسيرهاي غذارساني سلول ها و دفع پسماندهاي سلولي هستند. براي مثال خلل و فرج بهينه براي رشد سلولهاي فيبروبلاست درون رست ، خلل و فرج مناسب براي بازسازي پوست يك پستاندار بالغ  30-350 , 20-125 براي بازسازي استخوان است. بنابراين هدف اصلي در ساخت داربست، كنترل دقيق اندازه خلل و فرج و تخلخل است. مورد ديگر نحوه ايجاد چسبندگي مناسب سلول به سطح داربست است كه در اين مورد هم شيوه هاي متفاوتي به كار برده مي شود، يكي از ساده ترين شيوه ها به كارگيري رشته هاي كوچك پپتيدي در پروتئين هاي ECM است كه به عنوان واسطه مسئوليت چسبندگي سلول به بيومواد را بر عهده دارند. اجزاء گوناگون سرم قابل حل (پروتئين ها، پپتيدها) و رشته RGD براي تسهيل چسبندگي سلول شناخته شده اند.

روش هاي ساخت داربست

    از آنجا كه ECM بافت هاي مختلف باهم تفاوت دارد، داربست هاي مصنوعي به كار رفته براي هر بافت نيز با هم فرق مي‌كند. تهيه داربست هايي با ماتريس هاي مختلف نيازمند به كارگيري روش هاي ساخت متفاوتي است كه هر يك شيوه و كاربرد منحصر به خود را دارد. از جمله اين روش ها مي توان به
Melt Casting , Freeze Drying , Membrane Lamination , Solvent Casting

Gas Foaming , Polymerization, Phase Separation

 اشاره كرد. شكل داربست يا به عبارتي Morphology آن بايد دقيقاً شبيه بافت معيوب باشد. براي شبيه سازي شكل داربست با قسمت ناقص اندام (defect) از شيوه هاي كامپيوتري همانند CAD استفاده مي شود. داربست پردازش شده بر اساس اين الگو مورفولوژي دقيقي از ناحيه معيوب بافت خواهد داشت.

در ذيل خلاصه اي از روش هاي مهم ساخت داربست آمده است.

قالب گيري حلال (Solvent Casting)‍: قالب گيري حلال يك روش ساده براي توليد داربست مهندسي بافت است. در اين روش پليمر در يك حلال مناسب حل شده و در قالب ريخته مي شود. سپس حلال حذف گرديده و حالت پليمر را در شكل مورد نظر حفظ مي‌كند. اين شيوه به شكل هاي قابل حصول محدود مي شود. غالباً تنها طرح هاي قابل شكل‌گيري در اين روش صفحات صاف و لوله ها هستند. البته با قراردادن صفحات صاف روي هم نيز مي توان به اشكال پيچيده تر دست يافت. در اين شيوه مي توان با شستن ذراتي مانند كريستال هاي نمك كاشته شده درون پليمر كه Progen خوانده مي شود، داربست را به صورت متخلخل درآورد. مزيت اصلي قالب گيري حلال سادگي ساخت بدون احتياج به تجهيزات خاص است. همچنين از آنجا كه عمل ساخت در دماي اتاق انجام مي گيرد نرخ تخريب پليمر زيست تخريب پذير به روش قالب گيري حلال كمتر از فيلم هاي قالب گرفته شده از طريق تراكم خواهد بود. عيب اصلي قالب گيري حلال باقي ماندن احتمالي حلال سمي درون پليمر است. براي رفع اين عيب بايد به پليمر اجازه داد تا كاملاً خشك شده و سپس با استفاده از خلاء حلال باقي مانده را خارج نمود. عيب ديگر اين روش احتمال تغيير يافتن ماهيت پروتئين و ديگر مولكول هاي موجود در پليمر به واسطه استفاده از حلال است. (شكل 2)

لايه سازي غشاء (Membrane Lamination): لايه سازي غشاء روش هاي درماني از طريق سلول هاي كپسوله شده براي رهايش گسترده اي از محصولات به دست آمده از مولكول هاي كوچك (براي مثال، دوپامين، انكفالين ها) تا محصولاتي با ژن هاي بسيار بزرگ (مانند فاكتورهاي رشد، ايميونوگلوبولين ها) را در بر مي گيرد. رهايش مواد فعال در مناطق خاصي از بدن به طور سنتي توسط كپسول هاي پليمري تخريب پذير و غير تخريب پذير كه حاوي يك يا چند دارو هستند احاطه شده است. در اين حوزه مواد در حين ساخت با يك ماتريس پليمري تركيب شده و سپس بعد از مدت زماني مشخص از ميان ماده (diffusion) و يا در خلال تخريب ماده (erusion) آزاد مي شوند. در اين جا كنترل مناسب كنتيك هاي آزاد شده از اهميت خاصي برخوردار است. يك مثال در اين مورد كنتيك هاي رها شده مرتبه صفر به دست آمده از ميله هاي كوپليمر استات اتيلن- ونيل (EVAc) به كار رفته در رهايش عامل هاي شيمي درماني در مغز است. در طول دو دهه اخير محققان تلاش كرده اند كه مواد را از ناقل هاي رهايش هيبريدي زيست مصنوعي (bioartificial) كه شامل لايه هاي غشا بر سطح اجزاء سلولي كپسوله شده كه درون غشا هستند آزاد كنند. كاربرد و هدف اصلي سلول هاي كپسوله شده، درمان دردهاي مزمن بيماري پاركينسون و ديابت نوع I، همچنين ناتواني هاي ديگر ناشي از افت ترشح عملكرد سلول است كه با كاشت اندام يا درمان هاي دارويي به طور  كامل قابل مداوا نيستند. كپسوله كردن بافت عموما به دو شكل انجام مي گيرد: لايه بندي غشا ميكروكپسوله و ماكرو متخلخل در ميكرو كپسوله سازي يك يا چند سلول با پراكندگي‌هاي كروي فراوان (با قطر 100-300 nm) كپسوله مي شوند. در ماكرو كپسوله سازي تعداد زيادي از سلول ها يا توده هاي سلولي در يك يا چند كپسول نسبتاً بزرگ كاشته مي شوند. مزيت روش دوم، پايداري شيميايي و مكانيكي و سادگي بازيافت در صورت نياز است. اولين دستگاهي كه به اين روش تأئيديه ايالت متحده را كسب كرده است دستگاهي به نام كبديار (Liver assist)

انجماد- خشك سازي (Freeze- Drying): اين شيوه براي توليد داربست هاي PLG بسيار متخلخل با مزيت قابليت تلفيق رشد پايه پروتئيني و فاكتورهاي تفاضلي در زمان پردازش، معرفي شده است. اين شيوه قادر به ايجاد داربست هايي با تخلخل بيشتر از 90% و كنترل خلاء و فرج هايي به اندازه 20- 200  است. اين روش پردازش شامل ايجاد يك امولسيون از طريق هموژنيزه كردن محلول پليمر- حلال و آب، سرد كردن سريع امولسيون جهت حفظ ساختار حالت مايع و حذف حلال و آب در اثر انجماد و خشك سازي است. (شكل 3)

در اين فرايند، در ابتدا دو محلول مخلوط شدني فاز آب و يك فاز آلي را تشكيل مي دهند. فاز آلي توسط حل شدن PLG با ويسكوزيته ذاتي ويژه در MC ايجاد مي شود. فاكتورهاي زيست فعال و عوامل فعال را مي توان در اين فاز حل كرد. فاز آب از آب فوق خالص به همراه آب يا بدون افزودني هاي حل شدني مختلف مانند فاكتورهاي زيست فعال هيدروفيل تشكيل شده است. سپس فاز آلي و آب در يك لوله آزمايش شيشه اي كه 40% حجم آن آب است به هم اضافه شده و دو لايه نامخلوط را شكل مي‌دهند. اين لايه هاي نامخلوط به وسيله يك همگن ساز دستي كه در سرعت هاي مختلف نتظيم مي شود همگن شده و در يك قالب مناسب (براي مثال، شيشه يا مس) ريخته مي شود سپس با گذاشتن سريع قالب بر روي بلوك مس در كنار نيتروژن مايع با دماي (~ -1960C) سرد مي شود. نمونه هاي فوق در يك دستگاه انجماد- خشك سازي سفارشي 20 motorr و دماي آغازين –1100C منجمد و خشك مي شوند. بعد از اينكه دماي داخل امولسيون براي يك ساعت در –1100C به تعادل رسيد، دستگاه تراكم ساز خاموش شده و دستگاه متراكم ساز و امولسيون به آرامي در طي 12h تا دماي اطاق گرم مي شوند. نمونه هاي به دست آمده در يك دستگاه خشك ساز خلا در دماي اتاق براي ذخيره سازي و حذف بيشتر هر گونه حلال باقيمانده قرارداده مي شوند.

جداسازي فاز (Phase Separation): اين روش بر اساس جداسازي فاز مايع- جامد در محلول پليمر در اثر بلورينگي حلال عمل مي‌كند. اسفنج به دست آمده در اثر فرآيند جداسازي فاز  مايع- جامد داراي مورفولوژي لوله اي شكل ناهمگون با يك ساختار نردباني شكل داخلي است. اسفنج فوق با شبكه اي از خلل و فرج هاي پيوسته توسط القاي گرمايي جداسازي فاز مايع- مايع ايجاد مي شود. ماتريس رشته اي مصنوعي با فيبرهايي با قطري به مقياس نانومتر توسط فرآيند ژل سازي به وسيله القاي گرمايي تهيه مي شوند. ماتريس هاي نانو رشته اي با ساختار ماكرومتخلخل به وسيله تركيب روش پالايش پروژن و فرآيند ژل سازي به وسيله القاي گرمايي به دست مي آيند. اسفنج هاي متخلخل پليمرهاي زيست تخريب پذير و آپاتيت هاي استخواني معدني شكل توسط فرآيند جداسازي فاز مايع- جامد و فرآيند زيست تقليدي تهيه مي شوند. جداسازي فاز محلول پليمر را مي توان به چندين روش ايجاد كرد، كه شامل جداسازي از طريق غير حلال، جداسازي فاز از طريق شيميايي و جداسازي فاز از طريق گرمايي (TIPS) مي شود. در فرايندTIPS  كه يك روش نسبتاً جديد براي تهيه غشاهاي متخلخل است، دماي محلول پليمر كاهش يافته و جداسازي فاز رخ مي دهد كه فاز اول آن غني از پليمر و فاز دوم فقير از پليمر است. بعد از خارج سازي حلال از طريق عصاره گيري، تبخير يا تصعيد، پليمر موجود در فاز غني از پليمر به شكل اسكلت سخت شده و فضاهاي اشغال شده توسط حلال در فاز عاري از پليمر به صورت خلل و فرج اسفنج پليمر در مي آيند. غشاهاي به دست آمده از اين فرايند معمولاً داراي خلل و فرجي با قطر چندين ميكرومتر بوده و معمولاً براي داربست هاي مهندسي بافت مناسب نيستند. (شكل 4)

بسپارش (Ploymerization): داربست هاي به دست آمده از طريق روش بسپارش كانديدهاي خوبي براي مهندسي بافت به شمار رفته و به دليل سهولت ساخت نسبت به روش هاي ديگر ساخت داربست ارجحيت دارند. با وجوديكه پليمرهاي متخلخلي را مي توان به اين روش بسپارش كرد اما تعداد كمي از آنها منجر به داربست هاي متخلخل مي شوند. در اين روش تركيب منومر در حضور حلالي كه منومر در آن قابل حل ولي پليمر غير قابل حل است،  درون قالب بسپارش مي شود. گذار حلاليت در خلال بسپارش منجر به دو فاز مي گردد، ساختار زيستي پيوسته پليمر و حلال. بدين ترتيب داربست توليده شده در نتيجه بسپارش براي ايجاد خلل و فرج هاي درهم نيازي به پالايش پروژن ندارند. اسفنج ها يا داربست هاي PHEMA ساخته شده به اين روش داراي قابليت دخول سلول بوده و حلال مازاد آنها معمولاً آب است. اسفنج هاي PHEMA  به منظور افزايش حجم پستان و جايگزيني غضروف بيني نگهدارنده بين بافت قرنيه و هسته مركزي و جايگزين بافت هاي نرم به كار برده مي شوند. يكي از معايب اين اسفنج‌ها، آهكي شدن آنها پس از مرور زمان است. اين اسفنج ها قابليت تحمل اتوكلاو را داشته و به سادگي به اشكال مختلف تغيير فرم مي دهند.

اسفنج سازي گازي (Gas Foaming): روش اسفنج سازي گازي به دليل قابليت تخلخل پذيري بالا بدون به كارگيري دماي بالا يا حلال آلي حائز اهميت است. با حذف دماي بالا و حلال آلي مي توان مولكول هاي زيست فعال بزرگ شامل فاكتورهاي رشد را با حفظ فعاليت زيستي در پليمر مجتمع ساخت. پليمري كه در اين روش پردازش مي شود PLGA است. در اين روش گرانول هاي PLGA و پروژن كه معمولاً كلريد سديم است در يك كانتينر با فشار بالا (در حدود 5.5 Mpa) با CO2به مدت 24h به تعادل مي رسند. در اين مدت گاز CO2 در پليمر كه اكنون در تعادل ترموديناميكي به حالت سيال در آمده است حل مي شود. سپس فشار را به سرعت كاهش مي دهند. افت سريع فشار سبب به هم خوردن تعادل ترموديناميكي و در نتيجه تشكيل هسته حباب هاي CO2 در پليمر مي گردد. پليمر كه پس ازكاهش فشار تمايل به رسيدن به حالت جامد دارد به شكل اسفنج منبسط ميشود. ذرات پليمري منفرد در اطراف ذرات پروژن منبسط شده و پس از پالايش پروژن فوق يك داربست بسيار متخلخل با خلل و فرج هاي باز كنترل شده به دست مي آيد. از جمله مزاياي اين روش كنترل اندازه خلل و فرج و قابليت ايجاد داربست هاي بزرگ، عدم استفاده از حلال آلي و دماي بالا را مي توان نام برد. (شكل 5)

شكل 6، طرح بسيار ساده اي از فرآيند مهندسي بافت را نمايش مي دهد. در ابتدايي ترين مرحله اين نمودار، بافت از طريق biopsy خارج مي گردد. بافت فوق مي‏تواند Autograft (بافت خود فرد) يا Allograft (بافت فرد ديگر) يا Xenograft (بافت گونه ديگر) باشد. بافت به دست آمده در اين مرحله همانند بانك خون وارد قرنطينه شده و از جنبه‏هاي مختلف بيماري زايي مانند وجود ويروس HIV يا هپاتيت C,B، و تغييرات بردارهاي ژني مورد بررسي قرار مي گيرند. بافت ها تا زمان تعيين ايمني نهايي در قرنطينه و شرايط سرد نگهداري مي شوند.

مرحله بعد شامل تست هاي ايمني است كه شامل آزمون بافت از نظر Sterility در محيط تيوگليكولات يا مواد تصويب شده ديگر،تعيين سميت توسط آزمايش LAL و تست ميكوپلاسما توسط كشت مستقيم در محيط Sentry Cell Culture مي‌شود.

پس از مراحل فوق پردازش بافت كه شامل دو قسمت گزينش و جداسازي سلول از بافت است شروع مي گردد. در مرحله جداسازي، سلول‏ها از طرق مختلف از بافت جدا مي‏شوند. اين طرق شامل روش‏هاي برون كاشت، آنزيمي، مكانيكي، تجزيه شيميايي، تزريقي و تركيبي مي‌شود. گزينش سلولي بر اساس خاصيت منحصر به فردي كه يك سلول را از ديگري متمايز مي كند مانند چگالي، اندازه، نشانه گذاري، گذرگاههاي منحصر به فرد متابوليكي و احتياجات غذايي صورت مي گيرد.

سلولهاي بدست آمده بر روي داربست كاشته شده و در محيط كشت سلولي كه شامل مخلوطي از مواد غذايي ضروري (نمك‏ها، آمينو اسيدها، ويتامين‏ها، كربوهيدرات‏ها، اسيدهاي چرب)، بافرها (تثبيت كننده‏ها) و عناصر رديابي بصورت مكمل فاكتورهاي ميتوژنيك مشتق شده از حيوان، هورمون‏هاي مصنوعي و فاكتورهاي رشد مي باشد قرار مي گيرد. انواع خاصي از سلولهاي براي تكثير نيازمند هم كشتي با سلولهاي feeder هستند.

سلولها براي مدتي معين بر روي داربست كشت يافته و سپس در محل آناتوميكي مورد نظر Transplant مي شوند.

لازم به ذكر است كه كليه مراحل مهندسي بافت تحت نظارت دقيق سازمان غذا و دارو (FDA) صورت مي پذيرد.

 

فهرست مطالب مقاله ساخت داربست های مهندسی بافت به روش Gas Foaming, در ادامه قابل مشاهده می باشد.

 

  • پيشگفتار
  • نتايج قانونمند و استاندارد شده
  • گزينش و جداسازي سلول
  • توليد داربست‏هاي پليمري: قالب گيري حلال
  • توليد داربست‏هاي پليمري: لايه سازي غشاء
  • توليد داربست‏هاي پليمري: انجماد – خشك سازي
  • توليد داربست‏هاي پليمري: اشكال كامپوزيت پليمر- سراميك
  • توليد داربست‏هاي پليمري: جداسازي فاز
  • توليد داربست‏هاي پليمري: پليمريزاسيون (بسپارش)
  • توليد داربست‏هاي پليمري: پردازش اسفنج گازي
  • بر هم كنش‏هاي سلولي سطح مصنوعي: بيومواد خود مجتمع
  • بر هم كنش‏هاي سلولي سطح مصنوعي: چسبندگي سلول هدف

 

 

در صورت تمایل شما می توانید مقاله ساخت داربست های مهندسی بافت به روش Gas Foaming را به قیمت 29900 تومان از سایت فراپروژه دانلود نمایید. اگر در هر کدام از مراحل خرید یا دانلود با سوال یا ابهامی مواجه شدید می توانید از طریق آدرس contact-us@faraproje.ir و یا ارسال پیامک به شماره: 09382333070 با ما در تماس باشید. با اطمینان از وب سایت فراپروژه خرید کنید، زیرا پشتیبانی سایت همیشه همراه شماست.

آیا این مطلب را می پسندید؟
http://faraproje.ir/?p=9687
اشتراک گذاری:
فراپروژه
مطالب بیشتر
برچسب ها:

نظرات

0 نظر در مورد دانلود مقاله ساخت داربست های مهندسی بافت به روش Gas Foaming

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد.

هیچ دیدگاهی نوشته نشده است.